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Abstract 

 

The standard implementation of a Log-Structured Merge-tree (LSM-tree) (O’Neil, 

1996) is described as a disk-based data structure designed to provide low-cost indexing 

for a file experiencing a high rate of record inserts and deletes over an extended period. 

The standard LSM-tree design provides better I/O access patterns for write intensive 

workloads but the tradeoff is a decrease in performance of read queries. The typical 

implementation of the LSM-tree is initialized with its attributes set and it remains 

constant throughout the lifetime of the program. These attributes include the amount of 

data contained within each portion of the LSM-tree, the way in which data is moved from 

one part of the data structure to another and the frequency of data transmission. 

The purpose of this thesis is to design an adaptive LSM-tree that captures 

workload patterns by collecting statistics during its runtime and uses different versions of 

tunable parameters in order to optimize the performance. These tunable parameters adjust 

the behavior of the LSM-tree and allow it to store and read data using different 

techniques. This way, instead of having a single and fixed design as in current state-of-

the-art implementations, our new adaptive LSM-tree can transition between alternative 

designs and accommodate varying workloads. LSM-trees are prevalent in many modern 

systems and so this work finds applications in numerous systems categories from classic 

database systems to key-value stores.  



 

The project was implemented in C++ using object oriented principles in order to 

create a modular design that makes testing and extending more productive and efficient. 

This includes an implementation of a B-tree as each level’s data structure. Results from 

extensive testing are provided to show an increase in performance for workloads that 

include a change from read to write-heavy, write to read-heavy, or when a combination of 

several of these changes occur during runtime.
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Chapter 1  Introduction 

“…relational databases are the foundation of western 

civilization…If the database can be made to run faster on a small 

system, then you don't have to buy as much hardware to get the job 

done. In fact, performance is a critical measure of what you're doing. 

It's like house cleaning: you just have to do it, because if you don't, you 

can make silly things happen.” – Dr. Bruce Lindsay, IBM 

1.1 The Log-structured Merge-tree 

The general concept of the traditional design of a Log-Structured Merge-tree is to 

provide a data structure that can do writes in batches in order to achieve a speed-up due 

to the cost of expensive I/O transactions. This design trade-off can create a system that 

minimizes the cost associated with storing data on disk by using a standard B-tree 

implementation. This is because a B-tree requires two I/O transactions per random key 

blind-write (a write that does not involve a read before the data is written). This is due to 

the fact that a B-tree is first loaded from disk, modified, and then finally written back to 

disk. In order to reduce this behavior to minimize disk activity, an LSM-tree writes 

periodically in batches in a method referred to as a rolling merge. This rolling merge 

process occurs over two or more levels designed to contain the data in its entirety. The 

trade-off with this design decision is that reads will have to consult multiple levels in 

order to attempt to find data values. While the inherent behavior of the LSM-tree is set as 
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a write efficient data structure, certain design decisions can be modified in order to 

reduce the impact this design has on read queries.  

 

Figure 1 LSM-tree design (O’Neil, 1996) showing a two-level implementation. 

An early paper on the LSM-tree design (O’Neil, 1996) describes the basic 

structure as being composed of two levels. The first level, called C0, resides completely 

in memory while the second level, C1, is on disk. The LSM-tree design provided by this 

project uses tunable parameters to experiment with the number of disk levels, size of each 

disk level, size ratio between levels, size of the C0 memory level and the percentage of C0 

that is to be copied to the disk levels when a rolling merge occurs. The disk levels contain 

data that resides in B-tree implementations. In order to optimize the binary file creation 

and random access patterns associated with the B-tree, the C++ programming language 

was used and technical references were consulted throughout the design and 

implementation phase. With the initial implementation complete, a parallelized version 

was created. The rolling merge process was implemented in a separate background thread 

and multiple threads were tested to improve read performance. The parallelized version 

was used to create an adaptive data structure that relies on occasional system testing in 

order to analyze current workload conditions and optimize performance.  
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Figure 2 LSM-tree (O’Neil, 1996) rolling merge process transferring data from memory to 

disk. 

1.2 The Problem: Inadequate Adaptive Behavior During Runtime   

Modern LSM-trees come with a large array of tunable parameters that are 

typically configured during the setup stage. These include, but are not limited to, the 

amount of data that can be stored in a memory-resident buffer before a compaction is 

executed, the maximum number of concurrent compactions and the size ratio between the 

levels of the LSM-tree. This requires that we know what to expect during the lifetime of 

an application’s execution at the beginning. It also means that the system may not 

optimally handle dynamic environments, even if a significant amount of time is spent 

monitoring and continuously keeping it tuned. This is because optimal configuration can 

change during different phases of the workload and at an instance. Improvements made 

on these structures could have a significant impact on the performance of database 

systems that are used by the vast majority of technology companies today. 
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1.3 The Solution: CuttleTree Statistics Collection & Adaptive Tuning  

We introduce CuttleTree, an LSM-tree based key-value store that uses an array of 

tunable parameters and statistics collection to allow for optimized decision making at 

runtime. CuttleTree shows the potential that a self-designing system can have towards 

automatically adapting to its environment in order to handle the ever-changing data-

driven world of today.  

Contributions 

In summary, the contributions provided by this project are as follows: 

• In Chapter 3, we introduce CuttleTree, an LSM-tree based key-value store that 

enables adaptive responses to dynamic workload patterns by utilizing twelve tunable 

parameters. It includes a statistics collection mechanism that allows for decision 

making during runtime by detecting changes such as read-heavy and insert-heavy 

workload patterns. 

• In Chapter 3, we will describe the CuttleTree benchmark system’s architecture. This 

detailed implementation was used to model various workloads and test CuttleTree’s 

ability to adapt. It allowed for more fine-grained control over the conditions of our 

experiments than any state-of- the-art data system, such as LevelDB, that we 

observed. 

• In Chapter 3, we introduce the CuttleTree statistics collection platform. It is a key 

facet of the project which allows for dynamic decision making to occur. It maintains 

more statistical information about the runtime of the data system than any state-of-

the-art project we have observed. We describe how it was implemented on top of 
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LevelDB to reveal more detailed statistics than it otherwise would provide. In 

Chapter 4, we demonstrate the usefulness of these statistics and compare the results of 

using them to make dynamic decisions with the results of a static version of the 

system while keeping in mind the cost associated with maintaining these statistics. 

These dynamic decisions are based on a collection of “tuning knobs” that include (1) 

setting an upper bound constraint on the number of levels, (2) adjusting the size ratio 

between levels, (3) enabling bloom filters, fence pointers, and tombstone deletes for 

read optimization, (4) altering the size of memory buffers and the percentage of a 

buffer to be merged to a disk-resident level during a compaction, and (5) determining 

the frequency for the usage of the statistics collection mechanism.  
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Chapter 2  Background 

2.1 Rolling Merge Strategies of Log-structured Merge-trees 

Most LSM-tree designs belong to one of two categories based on their choice of 

rolling merge algorithm. An early paper on the LSM-tree design (O’Neil, 1996) describes 

the process that occurs when data is moved from memory to disk in order to address the 

size constraints of a memory resident data structure as it increases its total data allocation. 

When the memory resident portion of the LSM-tree reaches a certain defined capacity, an 

ongoing rolling merge process serves to delete some contiguous segment of entries from 

the memory resident portion and copy them to disk. This is referred to as a “leveling” 

merge policy. The second type of merge policy is called “tiered.” This policy makes 

updates less costly at the expense of read performance. It accomplishes this by splitting 

levels into multiple “runs”, and therefore avoids having to merge levels each time the C0 

memory level is at capacity. Since levels are made up of segments, they are no longer 

sorted. This results in more expensive read operations.   

Currently, there are several popular implementations that use different rolling 

merge strategies. The LevelDB/RocksDB system (Menon et al., 2014) relies on a B-tree 

based intermediate layer called the file-system. It divides layers up into non-overlapping 

segments of around 2mb in size. Anytime a segment-set is modified, the entire file-

system file must be rewritten. It performs merges using one of these segments and an 

adjacent segment. Since the data does not necessarily reside in contiguous locations on 



7 

disk, writing the data is not always efficient. Shuttle-Trees and Fractal-Trees (Kuszmaul, 

2014) take a different approach. They add write-deferral to their B-tree implementations. 

They accomplish this by using smaller block sizes than LevelDB’s segment sizes and 

writing portions of the b- tree as “shuttle buffers” as opposed to making an immediate 

write each time an update occurs.  

Our implementation will use the “leveling” rolling merge policy. In Chapter 4, we 

include several experiments that demonstrate the nature of our rolling merge process. 

We’ll take into consideration the number of CPU cores available and the hardware profile 

of the system in addition to the total time needed to complete a rolling merge. 

2.2 Related Work 

WiredTiger is a storage engine that was acquired by MongoDB. It is a high 

performance, scalable, production quality platform for data management. MongoDB 

bought the technology in order to address its need to do a better job on high write-volume 

workloads. It uses LSM-trees for sustained throughput under random insert workloads. 

The only configurable parameter of WiredTiger’s LSM-tree implementation is the size of 

the in- memory level. This thesis project will provide multiple parameters related to the 

number of levels and their sizes in order to improve the average read time.  

Read amplification is the amount of work done per logical read operation. The 

work done can include key comparisons or the cost of decompressing data read from 

storage. The bLSM general purpose LSM-tree (Sears et al., 2012) design proposes a 

technique to reduce read amplification. It uses Bloom filters to improve index 

performance. The paper describes their choice to scan the LSM-tree levels in order until a 
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matching record is found. They terminate the search early, if a record is found, instead of 

continuing to search levels for duplicates. They are able to do this since their focus is on 

the most recent version of the element. While this does address the need for improved 

read amplification, the design does not incorporate tunable parameters in order to further 

adjust the performance. This thesis project experiments with adjusting the number of 

levels and level sizes in addition to the use of a Bloom filter to improve read 

amplification.  

The Apache product HBase is an open-source, distributed storage manager well 

suited for real-time read/write access. It can provide an improvement on the MongoDB 

and bLSM designs in terms of read amplification by offering additional tunable 

parameters including the size of the C0 memory level and the number of disk files at each 

level. HBase works well with random read and write access patterns, especially for those 

organizations already heavily invested in the Apache Hadoop HDFS file system for 

storing large volumes of data. This thesis project will demonstrate a more fine-grained 

approach by including numerous tunable parameters and allowing the data structure to 

adjust the settings during runtime.  

LevelDB is a key-value storage library written at Google that provides an ordered 

mapping from string keys to string values. It incorporates some adaptability during 

runtime. The testing shared by Google suggests that read performance was not a priority. 

This is made apparent by the benchmarks provided for read performance being “quite 

small.” It was intended to characterize the performance of LevelDB when the working set 

fits in memory. The maximum number of levels are not configurable. The Google team 

states that write-heavy workloads should have more levels and read-heavy ranges should 
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have fewer levels. They address this by automatically triggering rolling merges for ranges 

that have seen a lot of lookups recently. They do this in order to avoid having fewer and 

larger data compactions that are typically far more stressful on the system. This thesis 

project experiments with a variable total number of levels in order to address the 

optimization needed for both read and write amplification.  

It will be demonstrated that the ability to change parameter settings during the 

lifetime of the application will have a positive effect on the performance. For example, 

increasing the size of the memory resident portion of the data structure, decreasing the 

number of levels and increasing the size of each level will decrease the average read time. 

This is because more data residing in memory and fewer levels to contain the data will 

result in fewer disk reads. Also, as the amount of levels increases, the throughput of 

inserts per second will decrease, since multiple levels involve multiple smaller data 

structures that need to be maintained. This will cause a more frequent transmission of 

data from one level to another. 
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Chapter 3  The CuttleTree Log-structured Merge-tree 

The name CuttleTree was inspired by one of the best adaptive behavior specialists 

in nature: the cuttlefish. In order to achieve the most effective results, the cuttlefish 

automatically adapts to its environment, blending in with its surroundings in order to go 

unnoticed and survive. It accomplishes this through the usage of “tunable parameters” 

such as the level of pigmentation associated with each of its tiny organs called 

chromatophores. Similar to the cuttlefish, our Log-structured Merge-tree provides a 

unique ability to adapt to the situation at hand. Our LSM-tree based key-value store uses 

an array of tunable parameters and statistics collection to allow for optimized decision 

making at runtime. Going forward, we will refer to our design simply as CuttleTree. 

 

Figure 3 The cuttlefish using its “adaptive camouflage” optimization. 
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3.1 Adaptive Nature of CuttleTree 

Tunable Parameters as Design Knobs 

The foundation of CuttleTree is a standard and well-documented LSM-tree 

(O’Neil, 1996). What makes CuttleTree unique, and grants it the ability to adapt during 

runtime, is its tunable parameters. CuttleTree has 12 tunable parameters that collectively 

establish 8 design knobs. The details of each design knob are as follows: 

1. The first tunable parameter is called is_read_Optimized. It is a Boolean that 

determines if the implemented version of a bloom filter, described later in this 

chapter, and a tombstone delete procedure, detailed in Chapter 4, should be used for 

read queries in order to increase performance. This allows performance testing to be 

conducted at different points in the runtime of the application in order to determine if 

these read optimization features create efficiency. If a large amount of read queries 

are being executed, they can be enabled by setting the Boolean value to true. This 

will decrease the amount of I/O interactions but it will require more memory to 

maintain the bloom filter and tombstone log file.  

2. The second tunable parameter is m_node_size. It sets the number of values present in 

each node of the B-tree associated with each level of the CuttleTree design. It is an 

integer that represents the number of values to be stored in each node. The general 

theory is that node size should be as small as possible, not to bring too much data 

from disk. In Chapter 4, we will demonstrate a method to determine the optimal node 

size and set the m_node_size parameter based on the hardware that CuttleTree is 

running on. The experiment will solidify our belief that optimal node size is governed 

primarily by access latency, transfer bandwidth and the record size. 
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3. The data structure that will be used for the memory-resident C0 level is determined by 

the third parameter, c0DataStructure, which has an option for a B-tree and another 

for an array set as an integer value of 1 or 2 respectively. The need for decision-

making related to the memory-resident data structure stems from the inherent trade-

off between the speed of reads and inserts of these two data structures versus the 

workload and amount of memory allocated to the data structure. The standard LSM-

tree is implemented with the C0 memory-resident level as an unsorted array to allow 

for inserts to be appended at the end with one simple operation. When C0 becomes 

full, it is first sorted and then written to the disk-resident levels. An array is a good 

option when C0’s main purpose is random access or iteration of the data. The B-tree, 

on the other hand, keeps keys in sorted order for sequential traversing. The B-tree 

uses a recursive algorithm that involves searching the tree to find the point, referred 

to as a leaf node, where the new element should be added. Since the B-tree keeps the 

index balanced, it must determine if there is enough space in that leaf node. This 

results in either no further action or the leaf node must be split into two new nodes 

and potentially merged with other nodes to maintain its balanced nature. This 

procedure leads to its faster search time complexity but a slower insert time 

complexity relative to an unsorted array. In terms of big O notation, both have a space 

complexity of O(n). The worst-case time complexity for a search is O(n) for an 

unsorted array and O(log n) for the B-tree. As described previously, the unsorted 

array appends new data to the end in O(1) time complexity while the B-tree takes 

longer for sufficiently large enough data at O(log n). 
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Time Complexity of Inserts & Reads in Big O Notation 

Inserts  Reads 

Unsorted Array  O(1)  O(n) 

B-tree   O(log n) O(log n) 

Figure 4 Table showing the time complexities for inserts and reads of an unsorted array and 

B-tree. 

4. The fourth parameter, num_levels, is an integer value that sets the upper bound on the 

total number of levels for the CuttleTree. Subsequent parameters will be described to 

determine the conditions required to elicit the creation of a new level but this design 

knob enabled us to have a stopping point. This allowed us to debug during the 

development phase by creating a forced stopping point to level creation in order to 

assess the correctness of our data compactions. It also helped complete planned 

experiments. For example, what performance implications could we address by 

observing an LSM-tree that has a minimal size difference between levels but is 

limited to only 5 levels. In this situation, our implementation would have a 5th level 

that would continuously expand as new inserts were processed. 

5. The CuttleTree is a “leveling” LSM-tree design that is a made up of a series of levels 

each with its own determined maximum size. The file size for the first disk-resident 

level, C1, is set using a long value fifth parameter named firstLevelFileSize. The 

sizeBetweenLevels (also known as level fan-out) sixth parameter is a float value that 

determines the capacities of adjacent levels by using the product of itself and 

firstLevelFileSize to set the file sizes of each subsequent level after C1. Tuning this 

relationship between levels allows us to manage the balance between read and write 

performance of the design. For example, lookup cost depends on the number of 

levels. We reduce the number of levels by increasing the size ratio between levels. 

We could achieve this outcome in a series of experiments with CuttleTree by setting 
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the firstLevelFileSize to 200,000 bytes and reducing the sizeBetweenLevels from 4 to 

2. 

6. LSM-trees manage the compaction of their data using the rolling merge process 

described in Chapter 2. CuttleTree provides a design knob to tune the amount of data 

that is transferred between the memory and disk levels. This design knob was used 

during experiments to validate the “Cost to Merge Levels” portion of the section 

“Cost & Complexity Analysis” found later in this chapter. It involved increasing or 

reducing the time required to execute a rolling merge. First, we have to define the size 

of CuttleTree’s C0 memory-resident level. We do this as a percentage of the 

firstLevelFileSize described in the previous design knob’s section with the seventh 

tunable float parameter: c0_percentage_of_c1. When C0 is smaller, less data is 

moved during a rolling merge. When the eighth tunable Boolean parameter, 

copyallFromC0, is set to false, the float type ninth parameter, c0percentage_to_copy, 

is used to determine the percentage of the total memory-resident values that should be 

moved to the first disk level during a rolling merge. This allows us to throttle the 

amount data transferred per rolling merge in order to reduce the total time of its 

execution. 

7. The single threaded CuttleTree can be made to a concurrent program when the tenth 

Boolean parameter, threadedRollingMerge, is set to true. This makes rolling merge 

processes execute in a separate thread allowing more inserts to occur simultaneously. 

It also enables a worker queue and thread pool implementation that allow for 

concurrent reads and deletes to enable the program to scale as the number of 

threads/cores grows. This parameter was useful during experimentation to understand 
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the impact of parallelization on the system during workloads that involved concurrent 

reads, writes and rolling merges. 

8. Later in this chapter, we will describe the statistics collection techniques that give 

CuttleTree its unique ability to adapt to various workloads for optimal performance. 

In order to measure CuttleTree’s performance, we had to create two parameters that 

disabled aspects of its adaptability in order to establish a baseline. The eleventh 

Boolean, use_initial_c0_stats_tuning, allowed us to disable adaptive behavior that 

occurred during the initial phase of runtime by setting its value to false. The twelfth 

Boolean, use_print_current_stats_and_adapt, determined whether CuttleTree would 

be an adaptive design by capturing the workload it experiences and reacting by tuning 

the design knobs outlined in this section. When set to true, CuttleTree collects 

statistics related to each operation and incrementally assesses the workload and 

current settings of the tunable parameters to decide if changes should be made.    

 

Figure 5 Excerpt from the documentation of CuttleTree’s LSM-tree class showing the 

constructor’s tunable parameters. 

Implementation 

CuttleTree provides insert, read, delete, and update functions. It was written in 

C++ and uses the object-oriented programming (OOP) paradigm to include three core 
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classes. The LSMTree class is the primary class that uses data structures that are both in 

memory, found in the LsmLevelMemory class, and on disk, found in the LsmLevelDisk 

class. The LSMTree class is where the tunable parameters, described in the previous 

section, were created.  

Once the implementation was complete, attention was focused on the adaptive 

nature of the application. Testing was conducted to determine several versions of the 

application with different settings for the tunable parameters. These versions were 

applied to different workload profiles in order to optimize the performance of the data 

structure. The system was modified to automatically adapt to different workloads as the 

program is running based on occasional tests performed by the system on recent activity. 

This was accomplished by collecting statistical information about recent data workload 

and running tests to report the current performance of the system. This statistics 

collection mechanism is described later in this chapter under “CuttleTree Statistics 

Collection Feature.” Testing the current performance of the system includes operations 

such as speed tests for a set amount of insert or read queries and finding the optimal node 

size of each level’s B-tree to support top performance. For example, when there are more 

reads occurring, the system can adapt by changing the tunable parameters in a way that 

optimizes the performance. One possible adjustment could be to make the LSM-tree 

contain fewer levels in order to reduce I/O operations when many reads are attempted in 

a short period of time.  
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Figure 6 Example of possible parameter settings for read and write optimized workloads. 

Bloom Filter 

The standard implementation of an LSM-tree found in use today is inherently 

designed to handle high write throughput. This is the result of using data structures, such 

as a B-tree, to contain the disk resident data and writing to these structures in a deferred 

batch process as opposed to taking immediate action. The multiple level design, with 

each having at least one data structure to contain a portion of the total data, of an LSM-

tree decreases the efficiency of read queries. If a read is requested, the LSM-tree will 

need to probe multiple levels and one read will be required per level. This was described 

in a research paper assessing the efficiency of LSM-trees (Kuszmaul, 2014). The 

researchers addressed the issue by using a Bloom filter.  
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The Bloom filter is a probabilistic data structure that is designed to rapidly 

determine whether an element is present in a data set. The term probabilistic means that 

the Bloom filter cannot tell us if the element is definitely in the database, but if the item is 

not in the database, the Bloom filter might be able to tell us that it is missing. An empty 

bloom filter is a bit array with all bits initially set to 0. Hash functions are used to map 

each element of the set to one of the array positions. To add an element to the Bloom 

filter array, feed it to each of the hash functions to get an assigned array position. The bits 

at the assigned array positions provided by each hash function are then set to 1. To query 

for a particular element, feed it to the hash functions to retrieve array positions. If any of 

the bits at these positions are set to 0, the element is definitely not in the set. If it were, 

the bits would have been set to 1 at all positions. If all values are set to 1, then either the 

element is in the set or the bits have by chance been set to 1 during the insertion of 

another element. This is why the Bloom filter is not able to say with certainty that the 

item is present in the set. It will be used in an attempt to provide a significant reduction in 

the time required to perform a read query as described by Adam Kirsch and Michael 

Mitzenmacher (Adam et al., 2007). Using the Bloom filter for read queries performed on 

the LSM-tree allows the application to avoid the need to do a disk I/O for levels that do 

not actually contain the element of interest. Research conducted (Kuszmaul, 2014) 

showed that in most cases, this means that a point query requires only one disk I/O. It is 

important to note that Bloom filters have limited capacity and depend on their configured 

size. Once all of the bits are set, the probability of a false-positive is 1. 
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 Figure 7 An example of a Bloom filter showing the set {x,y,z}. The element w is not in the 

set {x,y,z} because it hashes to one bit-array position containing a 0.  

Rolling Merge Algorithm 

CuttleTree uses a “leveling” LSM-tree design that consists of one B-tree data 

structure at each level. Here, we describe the algorithm that CuttleTree uses to make a 

complete compaction of the levels when a rolling merge is triggered. 

Rolling Merge Algorithm 

 

Here is a list of terms used for this algorithm:  

 

P = CuttleTree tunable parameter to control the percentage copied to the next level 

L = the total number of levels in the CuttleTree  

Cn = the nth level 

F = tunable parameter for the current level’s max file size 

 

1. Move P from C0 to C1 

2. For C1 to CL 

3. If F exceeded then move P to Ccurrent + 1 

4. empty Ccurrent 

C0 Memory Level Initial Fill-Up 

Most state-of-the-art LSM-tree based data systems in use today allow for 

configuring settings related to the level-based architecture. Although the primary way 

that CuttleTree adapts is though ongoing statistical collection, we can learn something 
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from the first fill-up of the C0 memory level. An additional feature was added to 

CuttleTree in order to determine the optimal number of disk levels dynamically as 

opposed to setting them at initialization. It accomplishes this by deciding if, up until the 

first rolling merge is triggered, there have been more reads than writes. This works since 

a fill-up of the memory level triggers a rolling merge. If we haven’t had a fill-up yet, we 

don’t have to know the number of levels required. It has been noted, by interviewing 

engineers in industry, that such an automated adaptation can save time and effort when 

implementing data infrastructures with many individual data systems. We utilize this 

concept for an adaptive experiment in Chapter 4. 

 
----------------------------- 

INITIAL C0 FILL-UP STATISTICS 

----------------------------- 

4416 TOTAL OPERATIONS. 

 

4001 INSERTS ~ 90.6024% OF TOTAL OPERATIONS. 

0 READS ~ 9.39764% OF TOTAL OPERATIONS. 

0 UPDATES ~ 0% OF TOTAL OPERATIONS. 

0 DELETES ~ 0% OF TOTAL OPERATIONS. 

 

SETTING LSM DISK LEVEL CONFIGURATION... 

 ~~SETTING 5 DISK LEVELS TO HANDLE INSERT HEAVY WORKFLOW.~~ 

Figure 8 Using statistics up until the first rolling merge to set the disk level configuration. 

CuttleTree Benchmark System 

The CuttleTree benchmark implementation created allowed us to model various 

workloads and test CuttleTree’s ability to adapt. It provided fine-grained control over the 

conditions of our experiments in order to isolate patterns where CuttleTree’s adaptive 

behavior could be highlighted. To initialize the benchmark, the user provides CuttleTree 

with the total number of operations requested, what percentage of the workload should 

each of the four types of operations (read, insert, update and delete) be and the 
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benchmark type. The benchmark has three options, the first being to run the operations in 

sequential order. If 100 total operations are requested, with 50% inserts and 50% reads, 

CuttleTree will execute 50 inserts followed by 50 point queries. The second option 

creates a random execution of the total operations based on the percentages provided. The 

third option is a fully customizable user-created sequence. For example, a custom 

benchmark consisting of a sequential insert phase followed by a random insert and write 

phase and ending with a ready-heavy phase was used to mimic a real workload described 

to us by a Facebook engineer. A company like Facebook experiences a workload like this 

during a typical day and their engineers need to prepare for it. A database could be set up 

in the morning by Facebook engineers, followed by peak user activity during the day 

with people adding posts and clicking various links, and ending with a lighter period of 

user searches at night. 

 

Figure 9 Showing the initialization parameters for the CuttleTree benchmark system. 

3.2 CuttleTree Statistics Collection Feature 

Statistics collection allows for the dynamic decision making of CuttleTree to 

occur. Collecting detailed statistical information about the runtime of CuttleTree allowed 

us to answer questions that led determining the correct adaptive behavior for a given 

workload. Do we accurately capture the workload? Is the workload read or write-heavy? 

How long does a rolling merge take to complete? What is the cost of making the 

suggested adaptation and is it worth it? Our statistics collection implementation allowed 

us to answer these questions. 
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Implementation 

We knew that we planned to use the CuttleTree statistics collection logic with 

other data systems, such as LevelDB, in addition to CuttleTree. For that reason, our C++ 

implementation was created in a separate class: CuttleTreeStatistics. An object of type 

CuttleTreeStatistics is created and passed to the data system at its initialization. Functions 

related to operations (read, write, update and delete) and modified to include appropriate 

calls to inform CuttleTreeStatistics of their actions. With each occurrence of these 

operations recorded, CuttleTreeStatistics is able to do the heavy-lifting. Its abilities 

include:  

• Recording details about each level of the LSM-tree. For each level: 

• For each type of operation, record how many occurred. 

• Each level consists of one or more files which consists of one or more blocks. The 

number of these disk-resident blocks and how many of each type of operation 

occurred was recorded. 

• The minimum, maximum, mean and median number of times per level/block that 

each operation occurred. 

• Counting how many rolling merges occurred and the average time to complete one. 

• Recording the runtime duration and total number of operations, along with the 

throughput in operations per second. 

 

Some of these statistics are collected in widely-used data systems such as 

LevelDB. With CuttleTreeStatistics, we are able to see more detailed information like 

activity at the block level. Since this CuttleTreeStatistics class was created as a separate 

module, we were able to implement it on top of LevelDB with relative ease. In Chapter 4, 

we describe experiments that utilized these statistics. The full output of these statistics, 

for CuttleTree and LevelDB, can be found in Appendix 1. In Appendix 1, we 
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demonstrate two LevelDB benchmarks that show accurate collection of block-level 

activity given differing read query patterns.  

 

3.3 Cost & Complexity Analysis 

 

Here is a list of terms used throughout this section:  

 

N = Total number of entries 

Di = Total number of entries at the i level of the LSM-tree 

L = Number of levels 

E = Average size of data entries  

B = Block size 

Bmin = The minimum block size, based on the filesystem 

T = Size ratio between levels 

Tlim = Size ratio value at which point L converges to 1  

IOPS = I/O operations per second 

 

 

Rolling Merge Cost 

As we have previously described, data are stored into multiple levels in an LSM-

tree. New records are inserted to the C0 memory level. When this memory buffer is full, 

its content is written to the C1 disk-resident level. This potentially triggers one or more 

rolling merges, based on a threshold for file sizes, and involves subsequent levels to 

participate. We can optimize for read or write-heavy workloads based on this concept by 

adjusting the size ratio between levels. CuttleTree provides tunable parameters, 

firstLevelFileSize and sizeBetweenLevels, in order to manage a balance that is present in 

all LSM-trees between read and write performance. We can reduce the cost associated 

with the total number of rolling merges executed by using a larger value for T. We use 
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this cost analysis in Chapter 4 with the experiment entitled “Decreased Rolling Merge 

Times.” 

Cost to Merge Levels 

We know that when the memory-resident C0 level reaches its threshold size, its 

data is synced to disk using a rolling merge. This data is merged with other disk-resident 

data in order to minimize the cost of read queries. If the number of levels is very large, it 

hurts read performance by increasing read amplification. If L > 1 at CuttleTree’s 

initialization, and we detect a change to a read-heavy workload, we could merge the data 

in order to have L = 1 and see an improvement in read throughput. We learned from 

Monkey (Dayan et al., 2017) that as T approaches Tlim, the number of levels L approaches 

1. We can make this happen by first adjusting CuttleTree’s tunable parameter: 

firstLevelFileSize for C1 to equal Tlim. Next, we merge subsequent levels C2-L to C1. This 

involves copying all values at each subsequent level to C1 so that the number of values in 

C1 = N. The total number of operations (number of entries not in C1) needed to 

accomplish this is: 

 

We will utilize this levels merge strategy in Chapter 4 under the experiment entitled 

“Merging Levels to Reduce Read Amplification.” 

Block Size Latency Cost 

We know that CuttleTree statistics collection added to LevelDB exposes details at 

the block level such as how many blocks were created and how many times they were 
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read from. This LevelDB block has an adjustable size that does not necessarily have to 

coincide with the filesystem’s notion of a block size. It is the size of the request that 

LevelDB uses to perform an I/O operation from disk. This size can have an impact on 

performance, as we will see in Chapter 4 with the experiment entitled “Block Statistics to 

Improve Random Reads Performance.” 

We can think of the cost to retrieve an entry from an LSM-tree as it relates to 

latency and throughput. Throughput, for our purpose, is impacted by the block size and 

I/O operations per second IOPS such that: Throughput = IOPS x B 

As B increases, so does the throughput. The amount of throughput required will 

determine the latency experienced by the LSM-tree per entry request. Requests made to 

the storage device will be based on Bmin. If B > Bmin then multiple sectors of disk will be 

read from. This can be an important consideration, especially for range queries. For exact 

searches, low latency can be obtained by using Bloom Filters to identify the blocks that 

need to be read off storage. However, for range queries, bloom filters cannot be used to 

provide low latency reads in the same way. As B increases in size, the latency associated 

with each range query should tend to increase as well. 
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Chapter 4  Experimental Analysis 

The main purpose of the experimental phase of this project was to test the system 

in order to learn about its characteristics. The CuttleTree implementation was tested using 

various hardware and all of the twelve tunable parameters. This allowed for the 

performance of different configurations of CuttleTree to be analyzed in order to make 

decisions based on design trade-offs inherent in its execution.   

4.1 Hardware, Dataset and Workload 

The primary computer used for testing was a 2015 Apple Macbook Pro Retina 

with 2.6GHZ Intel i7 quad core processor, 16gb RAM and a 1TB Apple SSD drive. An 

additional Apple Macbook Pro 2.6GHZ Intel i7 quad core processor with 16gbRAM and 

a 500GB HDD drive was used in order to test performance on various disks. The datasets 

used varied in size between 20k random numbers to 256 million random numbers 

generated using C++ and a seeded implementation of the rand() function in addition to a 

series of files that were loaded at application startup by CuttleTree’s benchmark system. 

The workload varied from write-heavy and read-heavy to a mixture of the two at different 

ratios. In order to test different scenarios, workloads such as repetitive value reads 

(reading for the same value many times) and updates followed by deletes and reads were 

added.  
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4.2 CuttleTree Static Experiments 

B-tree vs std::vector 

The CuttleTree implementation provided a tunable parameter to change the C0 

memory resident level’s data structure from a B-tree to a C++ standard-library vector. 

Various workloads were tested to see if there was a benefit to be had from either data 

structure. Reads and writes were tested, in sizes of 50k to 500k values, and no notable 

difference is throughput was determined. The design trade-off was made to choose a 

C++ std::vector for the final testing. This meant that inserts could be done in a simpler 

way, using the push_back method, as opposed to the B-tree implementation which had to 

readjust the shape of the tree after each insert. Various tests also showed that for smaller 

sets of data flow, a sorted vector can perform better than a B-tree. (Kuszmaul, 2014)  

Finding the Optimal B-tree Node Size 

Each level of the LSM-tree contains one or more tree-like data structure. These 

tree-like data structures contain many nodes. Each node contains a size that determines 

how many values may reside inside of it. How big should each node of the tree be? The 

well-established theory (see, for example, the Disk-Access Model (DAM) of (Aggarwal 

et al., 1988)) usually assumes that the underlying disk drives employ a fixed-sized block, 

and sets the block size of the tree to match that device block size. The theory also 

assumes that there is no difference between a small or large block size, leaving it to just 

an assessment of the number of blocks fetched from and stored to disk. The informative 

paper titled “Modern B-tree Techniques” (Graefe, 2011) offers the theory that optimal 
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node size is governed primarily by access latency and transfer bandwidth as well as the 

record size.  

 

Figure 10 An example Tree-like data structure showing nodes of various sizes. The 2-4-6 

node on the left shows a size of 3. 

The CuttleTree implementation provided by this thesis project contains a tunable 

parameter to set the node size for both memory and disk resident data structures. It was 

determined, after extensive testing, that the optimal node size for the test machine used (a 

MacBook pro i7 quad core with 16gb of ram and a modern apple SSD drive) was 20. See 

Figure 2.0 below.  

 

Figure 11 Displaying 20 as the optimal node size. 
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The results show an optimal value for the node size, M, to be 20. The above 

figure clearly displays that the best inserts per second throughput of both 200,000 and 

800,000 values. The test inserts were done using random numbers and the data finally 

resided 50% in memory and 50% on disk. Modern B-tree Techniques (Aggarwal et al., 

1988) declared that for a disk with .1ms access latency and 100 MB/s transfer bandwidth, 

a 10KB node size would be optimal for a modern flash device. Since the paper was 

several years old, it is possible that the newer SSD drive used for the testing reached 

higher levels of performance. Based on a 50byte allocation per value in CuttleTree, the 

test resulted in the size of 20 for nodes of the disk resident B-trees found in the C1-n 

levels.  

Read Optimization Using Range Detection & Tombstone Delete 

 Two techniques were used in order to attempt to create a “read optimized” LSM-

tree implementation. First, when an insert or read occurs, the data is examined by 

memory-resident checks in order to determine if disk access should occur. The 

CuttleTree contains two variables to contain the min and max values of the dataset. This 

creates a range with which future read requests can use in order to determine if a new 

value to be read could possibly reside in the CuttleTree. The second is the usage of 

tombstone deletes as opposed to traditional deletes or blind deletes. A traditional delete 

will probe the entire database to find if and where the key-value pair is located while a 

blind delete will skip the probing step and just execute the delete. CuttleTree can skip the 

on-disk read portion or execution of delete commands entirely by first checking if a value 

has already been placed in a memory-resident data structure that manages values “to be 

deleted.” This is known as a “tombstone” value. In read-heavy flow patterns, especially 
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in which frequent read misses occur on the same data, this behavior can reduce the 

amount of disk I/O activity and speed up read performance. 

 

Figure 12 The throughput for 20k reads using read optimization and not using it.  

The figure above shows that when 20k read attempts resulted in no misses, the 

throughput for the reads was very low using both read optimizations and not using them. 

This makes sense since we always have to access disk for successful reads from the disk-

resident levels regardless of whether we make a read optimization or not. When the reads 

almost entirely resulted in all misses (the value did not exist in the database), the read 

optimized technique resulted in much better performance. This is also true, to less of a 

degree, when the read attempts resulted in about 50/50 success rate of finding a value. 

This improvement in performance can be attributed to the I/O cost savings realized by not 

making unneeded disk reads. 
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The tombstone delete technique was then isolated and compared to a blind delete 

form of deleting values from the database. This leads to a key design tradeoff found in 

this system. If the blind deletes are done, CuttleTree sends a request to each level to 

delete the value requested for removal. This results in potentially many disk operations 

since the value could be present on the last disk of CuttleTree. If the tombstone method is 

applied, data could be inconsistent in the B-trees found on disk, causing different results 

when inserting, reading, updating and deleting. Since the focus of this experiment was to 

create a read optimized CuttleTree, the tombstone delete was preferred. The tombstone 

method was found to outperform the blind delete method when there was a flow of many 

reads, especially when lots of reads are repeating the search for a particular value. The 

figure below shows the results of inserting 500k values following by deleting 50k values 

and then searching 500k values. In this instance, it does not matter if the 50k values are 

marked as tombstone or blindly deleted, the results are still very similar. In contrast on 

the right, when there are 500k inserts following by 50k deletes and 100k reads, of which 

20% are repeated 3 times, the tombstone method is able to outperform blind delete. This 

is a situation in which the CuttleTree is able to quickly read from memory the tombstone 

vector which declares values that have been marked for deletion.  
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Figure 13 Displays TOMBSTONE vs BLIND deletes and shows TOMBSTONE 

outperforms when reads are frequently repeated.   

Parallelization 

In order to increase the performance of the overall CuttleTree design on a 

multicore system, two parallelization techniques were implemented. Since the memory 

and disk levels have certain functionality that coexists, the rolling merge calls were able 

to be moved to a separate thread. The current implementation has one thread execute all 

inserts to memory until a rolling merge is requested (since C0 has reached its defined 

limit). The rolling merge is then executed in a separate thread and is then joined 

concurrently by a second thread which will fill C0 back up until another rolling merge is 

requested. This process allows for C0 to quickly absorb more inserts without having to 

wait for the rolling merge to compete as it would in a single threaded program. The figure 

below shows the results from such a dual threaded insert rolling merge technique.  
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Figure 14 Showing an increase in throughput as additional cores are added to the multi-

thread rolling merge.   

It is apparent from the testing that when 2, 4, and 8 cores were tested using the 

multi-threaded process to run rolling merge, the throughput of inserts increased steadily.  

In order to attempt to perform further read optimizations for CuttleTree, a worker 

queue was implemented. The worker queue is a thread safe object that maintains a list of 

“work” to be done by a pool of threads. Inserts were followed by large reads and the 

results were tested for a steady increase in threaded performance. The results showed that 

as an additional thread was spawned and able to take work from the queue, the overall 

throughput increased. This was true until the point when the additional threads spawned 

did not have the ability to further deplete the worker queue fast enough. It appears that 

for the system used for this experiment, worker threads were waiting for work starting at 

5 threads.  
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The figure below shows an increased performance for both 500k and 1 million 

reads up until 5 threads are accessing the worker queue. 

 

Figure 15 Showing an increase in throughput as additional cores are added to worker queue 

for reads until 5 threads.   

HDD vs SSD 

The major principal of the LSM-Tree is that it is used to create a better usage of 

disk I/O computation. Since the disk levels are stored as B-trees, it made sense to test the 

performance of these major industry-standard forms of hard drive storage. Tests were run 

to compare the HDD vs SSD in an Apple Macbook Pro. The first test to realize results 

from was starting with an empty CuttleTree and inserting incrementally from 10k to 80k 

inserts. The below figure shows the time that elapsed from start to finish for HDD and 

SSD drives. (time elapsed was chosen to highlight the near linear decrease in throughput 

for HDD)  
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Figure 16 Comparing HDD vs SSD for writes.  

The next test run was to run a workload of sequential reads from 10k to 80k using 

the same SSD and HDD equipped computers. The results, shown below, were that the 

HDD took more time to complete each incremental increase in reads while the SSD 

remained steady. It was noted that reads tend to perform slower than writes and that the 

SSD drive did start to show a decrease in throughput at approximately 70k inserts.  
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Figure 17 Comparing HDD vs SSD for reads.  

The results produced by these tests were not surprising. They did act as 

confirmation that the CuttleTree implementation was steady enough to produce reliable 

results. Testing the HDD at higher levels of transactions would take a lot more time to 

run and didn’t seem to yield any interesting further results. It was interesting to put the 

SSD to a more stressful test to see the throughput behavior. The figure below shows the 

results of SSD sequential writes from 100k to 3.2 million total.  
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Figure 18 Showing higher number of inserts for SSD drive.  

The results confirm that the throughput decreases in a near linear manner as the 

number of inserts increases.  

The figure below demonstrates that even with attempts made to increase read 

performance, the CuttleTree still has faster write patterns than read. It shows a much 

more severe decrease in throughput and becomes very slow at the 8 million reads point.  
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Figure 19 Showing higher number of reads for SSD drive. 

In order to confirm consistent behavior for the design, updates were executed on 

the SSD drive as well. The range of 100k to 1 million updates were tested and a linear 

decrease in throughput was determined. The figure below shows these findings which 

confirmed consistent and expected results.  
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Figure 20 Showing updates for the SSD drive. 

Inserts Throughput as Levels Increase 

The first test was designed to measure the throughput as the amount of levels used 

by CuttleTree increased. This was easy to perform based on the tunable parameters 

present in the system for setting the amount of levels of CuttleTree, the size of each level, 

the size ratio between levels, the size of the memory level at C0, and the amount of data 

that is to be copied from level to level. The experiment was run with 200k and 400k 

inserts and a maximum of 5 disk resident levels in addition to the C0 memory level. The 

results in the figure below show that as the system has to insert to deeper levels, the 

throughput decreases. There is particular point noted at levels after C2 that suggests that it 

may be optimal to have no more than two disk resident levels in the CuttleTree.  
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Figure 21 Showing throughput with total levels increase. 

Read to Write Ratio 

This test was to alter the read vs write ratio of the benchmark. Starting with 100% 

writes and moving to 90% writes and 10% reads all the way to 100% reads measured for 

transactions per second yielded the following results demonstrated in the figure below. 
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Figure 22 Showing Read vs Write ratio. 

The results verify that as the read-heavy workload increased, the over transaction 

per second decreased. This test offered verification that the CuttleTree design was 

behaving in a reliable and predictable way that gave some credibility to the slight 

increase in performance witnessed by the read optimizations offered by this project.  

4.3 CuttleTree Adaptive Experiments 

The implementation of CuttleTree has twelve tunable parameters. In order to fully 

understand the system, and now that the consistency of the system has been confirmed by 

the previous tests, it was time to create experiments that could lead to future research in 

adaptive and tunable performance parameters for an active LSM-tree. 
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Merging Levels to Reduce Read Amplification 

In the case when CuttleTree detects a change from a write-heavy to read-heavy 

workload, an adaptive decision can be made to improve overall throughput. After 

CuttleTree’s first several statistics collection actions, it detected a write-heavy workload 

and set the maximum number of levels to 5. Many more insert requests followed but at 

some point, CuttleTree detected a change to a read-heavy phase. We know that read 

amplification can be reduced by decreasing the total number of levels needed to probe. 

We changed the number of levels to one based on the cost described in Chapter 3 under 

“Cost to Merge Levels.” Having one level reduced the number of disk seeks per read. 

The figure below demonstrates that from a range of 100k to 1 million operations, this 

adaptive behavior improves CuttleTree’s read throughput. 

 

Figure 23 Showing Throughput for a read-heavy workload as a result of merging levels. 
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Decreased Rolling Merge Times 

CuttleTree’s statistics collection allowed us to analyze the average time needed to 

complete a rolling merge. We can isolate this statistic and give CuttleTree an adaptive 

behavior based on the size ratio between levels for a merge policy improvement. This 

adaptation is based on the cost analysis provided in Chapter 3 under “Rolling Merge 

Cost.” We ran between 100k and 1 million total operations of which 90% were inserts 

and 10% were random reads. The benchmark was set to randomize the order of these 

operations. Since there were 90% inserts, CuttleTree detected an insert-heavy workload 

and adjusted by increasing the size ratio between levels T. This adaptive behavior, 

demonstrated in the figure below, was compared to a standard execution that did not 

modify T during runtime. 

 

Figure 24 Showing adaptive behavior for decreased rolling merge times. 
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Adaptive Behavior & The Multi-Phase Workload 

From interviews conducted with engineers in industry, we heard comments such 

as “I want the LSM-tree to adapt at runtime. For example, you might start with a write-

heavy workload while loading, then do read-write during the day, then do read-mostly 

overnight, repeat.” We decided to take the techniques described thus far and adapt to this 

multi-phase workload. We used CuttleTree’s benchmark system to create a workload that 

starts as write-heavy, changes to a mixed read and write phase, and ends as read-heavy. 

We did this for 250k to 2.5 million total operations. 

From the previous experiment entitled “Inserts Throughput as Levels Increase”, 

we learned that CuttleTree achieves the best insert-per-second throughput with two disk-

resident levels. Therefore, CuttleTree initially detects an insert-heavy phase and creates 

an upper bound constraint of two disk levels as an optimization. As more reads come in, 

CuttleTree statistics eventually detects that the workload has changed from a mixed 

insert/read phase to a read-heavy phase. The levels are combined to make one disk 

resident level and C0 is flushed to disk so that there were fewer places to probe. 

On the other hand, a non-adaptive version of CuttleTree is set for the standard 5 

level configuration and does not adapt during runtime. It incurs higher cost penalties, as 

described in Chapter 3 under “Cost & Complexity Analysis” and the figure below shows 

its inferior performance when compared to its adaptive counterpart. The figure below 

suggests that the cost to compact the data to one level is higher as N increases (total 

throughput decreases ~1.5 million total operations) but still yields improved overall 

throughput when compared to the standard non-adaptive version of CuttleTree. 



45 

 

Figure 25 Showing adaptive behavior for a dynamic workload. 

4.4 CuttleTree Statistics Collection & LevelDB 

Using Block Statistics to Improve Random Reads Performance 

Our implementation of CuttleTree statistics on top of LevelDB allowed us to 

reveal more detailed statistics than it otherwise would provide. In this experiment, we 

demonstrate the usefulness of these statistics in an attempt to find the optimal block size 

for LevelDB. We know that CuttleTree statistics added to LevelDB exposes details at the 

block level such as how many blocks were created and how many times they were read 

from. Based on the “Block Size Latency Cost” analysis in Chapter 3, we can use the fact 

that latency associated with LevelDB’s block size impacts throughput of random reads, 

especially for range queries since they don’t benefit from bloom filters like point queries 

can. For this experiment, we set LevelDB’s block size incrementally higher from 
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100bytes to 2mb and used a standard LevelDB benchmark (db_bench). We started with a 

fill sequence of 10 million entries and then did read queries randomly for 10 million 

times. The figure below shows the total throughput. From these results, we can determine 

that a LevelDB block size of ~100k provides the optimal balance when considering the 

trade-off between minimizing the cost associated with the latency to retrieve data from 

disk and the insert-friendly nature of maintaining larger block sizes. 

 

Figure 26 Showing throughput using variable LevelDB block sizes. 

4.5 Strengths and Weaknesses 

The main strength of CuttleTree is its ability to adapt to certain workload-related 

changes during runtime. It uses its tunable parameters and statistics collection to facilitate 

dynamic decision making. While it does allow for improved performance with occasional 

workload changes, like one shift from insert to read-heavy, it fails to calculate and weigh 
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the cost to make some of its changes on the fly. For example, in this chapter’s experiment 

entitled “Adaptive Behavior & The Multi-Phase Workload”, the cost to compact all the 

entries N is not weighed against the gain in performance at the time of decision making. 

For example, if the read queries up to that point resulted mostly in bloom filter 

intervention that prevented disk I/O activity, then CuttleTree should probably not pay the 

cost to decrease read amplification theoretically.  
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Chapter 5  Summary and Conclusions 

 

While modern LSM-trees come with a large array of tunable parameters, 

configuring them typically requires that we know what to expect during the lifetime of an 

application’s execution at the beginning. Improvements made on these structures could 

have a significant impact on the performance of database systems that are used by the 

vast majority of technology companies today. We introduce CuttleTree, an LSM-tree 

based key-value store that uses an array of tunable parameters and statistics collection to 

allow for optimized decision making at runtime. CuttleTree’s benchmark provides more 

fine-grained control over the conditions of our experiments than any state-of-the-art data 

system we reviewed. The CuttleTree statistics platform facilitated dynamic decision 

making by encouraging adaptive behavior based on the fast detection of workload 

changes. 

Future Work 

CuttleTree makes decisions during runtime in order to optimize performance. 

Future work could incorporate real-world constraints, such as limited memory or a 

company’s choice to limit budget towards additional disk space, when executing decision 

making. Further, we could incorporate the cost-benefit analysis of rolling merges related 

to “leveling” vs “tiered” LSM-tree implementations to determine which type is better for 
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the workload at hand and determine the cost to shift the data from one type to the other 

dynamically. 

We designed CuttleTree to detect the workload phases as the program runs. We 

began to create a hardware diagnostic sequence that would allow for more adaptive setup. 

In Appendix 1, we demonstrate this “Initial Adaptive Tuning” phase. First, it attempts to 

understand the health of the hardware by measuring the change in CPU temperature 

before and after running a stress test. It then collects disk related information such as 

block size and how much physical memory is available. Future work could use this 

information to determine the appropriate size for the C0 memory level and, based on the 

anticipated size of each entry, we could use the results from our “Finding M (node size)“ 

experiment found in Chapter 4 to determine the optimal node size for disk-resident B-

trees. The trade-off between the cost of memory and disk capacity could be weighed to 

alter the demands placed on the hardware by CuttleTree. 
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Appendix 1  CuttleTree Sample Output 

CuttleTree Output 

The CuttleTree output starts with an “Initial Adaptive Tuning” phase which 

collects hardware-related statistics to be used for initial configuration. It uses the entry 

size and disk block size to calculate the optimal node size for the disk-resident B-trees. It 

displays the total amount of physical memory so that a C0 size can be selected. 

----------------------------------- 

STARTING INITIAL ADAPTIVE TUNING... 

----------------------------------- 

The CPU Temperature is 68.0°C 

 

Running the stress test... 

Last Number in the Fib. sequence - 514229 

Stress test complete! 

 

The CPU Temperature is 68.2°C 

 

The disk block size is 4096 bytes. 

The size of one key value pair is: 16 

The calculated value for the optimal node size is: 256 

 

Total Physical Memory  =   16777216 k 

Total Physical Memory  =      16384 MB 

Total Physical Memory  =         16 GB 

 

The optimal size for c0 =    8388608 k 

 

Processor Information: 

Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz 

--------------------------------- 

INITIAL ADAPTIVE TUNING COMPLETE! 

--------------------------------- 

 

 

-------------------------------- 

RUNNING THE LSM TREE BENCHMARK 

-------------------------------- 

1100000 TOTAL OPERATIONS 
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100000   INSERTS. 

1000000  READS. 

0        UPDATES. 

0        DELETES. 

 

 

----------------------------- 

INITIAL C0 FILL-UP STATISTICS 

----------------------------- 

6001 TOTAL OPERATIONS. 

 

6001 INSERTS ~ 100% OF TOTAL OPERATIONS. 

0 READS ~ 0% OF TOTAL OPERATIONS. 

0 UPDATES ~ 0% OF TOTAL OPERATIONS. 

0 DELETES ~ 0% OF TOTAL OPERATIONS. 

 

 

SETTING LSM DISK LEVEL CONFIGURATION... 

 

 ~~SETTING 5 DISK LEVELS TO HANDLE INSERT HEAVY WORKFLOW.~~ 

 

 

 

Next, during runtime, it optionally outputs information related to each increment 

of operations that CuttleTree statistics uses to determine workload conditions. It displays 

actions related to all adaptive decision making. 

 
15000 OPERATIONS HAVE OCCURRED. CALIBRATING CUTTLETREE using ADAPTIVE 

TUNING... 

INSERTS/READS -> 15001/0 

INSERT PERCENTAGE IS 100 

INSERT HEAVY WORKFLOW DETECTED, ADAPTIVE TUNING COMPLETE!  

… 

… 

… 

15000 OPERATIONS HAVE OCCURRED. CALIBRATING CUTTLETREE using ADAPTIVE 

TUNING... 

INSERTS/READS -> 765051/0 

INSERT PERCENTAGE IS 100 

~~~ADAPTIVE TUNING COMPLETE!~~~ 

… 

… 

… 

15000 OPERATIONS HAVE OCCURRED. CALIBRATING CUTTLETREE using ADAPTIVE 

TUNING... 

INSERTS/READS -> 1008244/416851 

INSERT PERCENTAGE IS 70.7492 

~~~ADAPTIVE TUNING COMPLETE!~~~ 

… 

… 

… 
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15000 OPERATIONS HAVE OCCURRED. CALIBRATING CUTTLETREE using ADAPTIVE 

TUNING... 

INSERTS/READS -> 1199999/1200161 

INSERT PERCENTAGE IS 49.9966 

READ HEAVY WORKFLOW DETECTED, ADAPTIVE TUNING COMPLETE!  

 

~~~ADAPTIVE TUNING COMPLETE!~~~ 

… 

… 

… 

15000 OPERATIONS HAVE OCCURRED. CALIBRATING CUTTLETREE using ADAPTIVE 

TUNING... 

INSERTS/READS -> 1199999/1995214 

INSERT PERCENTAGE IS 37.5562 

~~~ADAPTIVE TUNING COMPLETE!~~~ 

… 

… 

… 

~~~IT TOOK 81.7556 SECONDS TO PROCESS 1,100,000 OPERATIONS~~~ 

 

 

After runtime completes, CuttleTree outputs basic statistics about each level 

including the final values count and total size of the files.  

C0 VALUES COUNT: 3976 

-----------------------------------------------------------------------

-------- 

C1 file size is - 968808 

LEVEL NUMBER - 1 

maxFileSize - 200000 

lsmLevelDisk - 0x7fff5fbe5050 

fileName - c1.bin 

the values count in this level is 23017 

 

-----------------------------------------------------------------------

-------- 

C2 file size is - 872888 

LEVEL NUMBER - 2 

maxFileSize - 400000 

lsmLevelDisk - 0x7fff5fbe7820 

fileName - c2.bin 

the values count in this level is 19698 

 

-----------------------------------------------------------------------

-------- 

C3 file size is - 1035952 

LEVEL NUMBER - 3 

maxFileSize - 800000 

lsmLevelDisk - 0x7fff5fbe9ff0 

fileName - c3.bin 

the values count in this level is 22520 

 

-----------------------------------------------------------------------

-------- 
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C4 file size is - 1505960 

LEVEL NUMBER - 4 

maxFileSize - 1600000 

lsmLevelDisk - 0x7fff5fbec7c0 

fileName - c4.bin 

the values count in this level is 31682 

 

-----------------------------------------------------------------------

-------- 

C5 file size is - 297368 

LEVEL NUMBER - 5 

maxFileSize - 3200000 

lsmLevelDisk - 0x7fff5fbeef90 

fileName - c5.bin 

the values count in this level is 4404 

 

 

Finally, CuttleTree statistics displays summary statistics. It shows the number of 

operations that occurred at each level (and each block for LevelDB). It displays total 

operations taking internal operations, like those incurred during a rolling merge or reads 

at multiple levels, into consideration, and displays the number and average running time 

for the rolling merges. Finally, the elapsed time and throughput is displayed. 

-------------------------- 

~~CUTTLE TREE STATISTICS~~ 

-------------------------- 

 

THERE ARE 6 LEVELS (including C0 memory level) 

 

Level 0 

Number of Reads = 999987 

Number of Writes = 99999 

Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Level 1 

Number of Reads = 960725 

Number of Writes = 96023 

Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Level 2 

Number of Reads = 756375 

Number of Writes = 128383 

Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Level 3 

Number of Reads = 555035 

Number of Writes = 279781 
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Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Level 4 

Number of Reads = 338711 

Number of Writes = 118341 

Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Level 5 

Number of Reads = 39206 

Number of Writes = 15266 

Number of Deletes  = 0 

Number of Updates = 0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

TOTAL READS = 3650039 

TOTAL WRITES = 737793 

TOTAL DELETES = 0 

TOTAL UPDATES = 0 

TOTAL OPERATIONS = 4387832 

 

NUM. ROLLING MERGES = 249 

AVERAGE TIME FOR A ROLLING MERGE = 0.194368 SECONDS 

 

~~~IT TOOK 81.7556 SECONDS TO PROCESS 4387832 INTERNAL OPERATIONS~~~ 

 

 

THE THROUGHPUT WAS 53670.1 operations per second 

--------------------------------- 

CUTTLE TREE STATISTICS COMPLETE! 

--------------------------------- 

 

CuttleTree Statistics & LevelDB Output 

Here, we show the CuttleTree statistics class built on top of LevelDB to 

demonstrate block-level details. For this output, we display the LevelDB benchmark 

system running a fill sequence followed by a read-heavy phase that isolates ~1% of the 

database. We can see that the total blocks read from is only 5 of the 525 created.  

LevelDB:    version 1.20 

Keys:       16 bytes each 

Values:     100 bytes each (50 bytes after compression) 

Entries:    1000000 

RawSize:    110.6 MB (estimated) 

FileSize:   62.9 MB (estimated) 

------------------------------------------------ 

fillseq      :       2.833 micros/op;   39.1 MB/s      

readhot      :       2.793 micros/op;                  
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-------------------------- 

~~CUTTLE TREE STATISTICS~~ 

-------------------------- 

 

TOTAL NUMBER OF BLOCKS -> 525 

TOTAL BLOCKS READ FROM -> 5 

TOTAL BLOCK READS -> 779256 

MIN NUMBER OF BLOCK READS -> 117022 

MAX NUMBER OF BLOCK READS -> 221122 

 

THE AVERAGE (mean) # of BLOCK READS -> 155851 

THE AVERAGE (median) # of BLOCK READS -> 220152 

 

TOTAL MEMORY LEVEL (c0) READS -> 0 

TOTAL DISK LEVELS (c1-n) READS -> 1000000 

TOTAL WRITES FOR ALL LEVELS -> 1000000 

 

 

~~~IT TOOK 5.6434 SECONDS TO PROCESS 2000000 OPERATIONS~~~ 

 

 

THE THROUGHPUT WAS 354396 operations per second 

--------------------------------- 

CUTTLE TREE STATISTICS COMPLETE! 

--------------------------------- 

 

For this output, we display the LevelDB benchmark system running a fill 

sequence followed by a read-heavy phase that is random across the entire database. As 

opposed to the previously displayed output, we can see that the total blocks read from is 

now 455 of the 525 created.  

LevelDB:    version 1.20 

Keys:       16 bytes each 

Values:     100 bytes each (50 bytes after compression) 

Entries:    1000000 

RawSize:    110.6 MB (estimated) 

FileSize:   62.9 MB (estimated) 

------------------------------------------------ 

fillseq      :       2.839 micros/op;   39.0 MB/s      

readrandom   :       3.585 micros/op; (1000000 of 1000000 found) 

  

-------------------------- 

~~CUTTLE TREE STATISTICS~~ 

-------------------------- 

 

TOTAL NUMBER OF BLOCKS -> 525 

TOTAL BLOCKS READ FROM -> 455 

TOTAL BLOCK READS -> 985162 

MIN NUMBER OF BLOCK READS -> 1644 
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MAX NUMBER OF BLOCK READS -> 2350 

 

THE AVERAGE (mean) # of BLOCK READS -> 2165 

THE AVERAGE (median) # of BLOCK READS -> 2202 

 

TOTAL MEMORY LEVEL (c0) READS -> 12164 

TOTAL DISK LEVELS (c1-n) READS -> 987836 

TOTAL WRITES FOR ALL LEVELS -> 1000000 

 

 

~~~IT TOOK 6.44264 SECONDS TO PROCESS 2000000 OPERATIONS~~~ 

 

 

THE THROUGHPUT WAS 310432 operations per second 

--------------------------------- 

CUTTLE TREE STATISTICS COMPLETE! 

--------------------------------- 

 

 


